How do JavaScript closures work?

Created 21.09.2008 14:12
Viewed 1.51M times
7629 votes

How would you explain JavaScript closures to someone with a knowledge of the concepts they consist of (for example functions, variables and the like), but does not understand closures themselves?

I have seen the Scheme example given on Wikipedia, but unfortunately it did not help.

Answers 50

A closure is a pairing of:

  1. A function, and
  2. A reference to that function's outer scope (lexical environment)

A lexical environment is part of every execution context (stack frame) and is a map between identifiers (ie. local variable names) and values.

Every function in JavaScript maintains a reference to its outer lexical environment. This reference is used to configure the execution context created when a function is invoked. This reference enables code inside the function to "see" variables declared outside the function, regardless of when and where the function is called.

If a function was called by a function, which in turn was called by another function, then a chain of references to outer lexical environments is created. This chain is called the scope chain.

In the following code, inner forms a closure with the lexical environment of the execution context created when foo is invoked, closing over variable secret:

function foo() {
  const secret = Math.trunc(Math.random()*100)
  return function inner() {
    console.log(`The secret number is ${secret}.`)
const f = foo() // `secret` is not directly accessible from outside `foo`
f() // The only way to retrieve `secret`, is to invoke `f`

In other words: in JavaScript, functions carry a reference to a private "box of state", to which only they (and any other functions declared within the same lexical environment) have access. This box of the state is invisible to the caller of the function, delivering an excellent mechanism for data-hiding and encapsulation.

And remember: functions in JavaScript can be passed around like variables (first-class functions), meaning these pairings of functionality and state can be passed around your program: similar to how you might pass an instance of a class around in C++.

If JavaScript did not have closures, then more states would have to be passed between functions explicitly, making parameter lists longer and code noisier.

So, if you want a function to always have access to a private piece of state, you can use a closure.

...and frequently we do want to associate the state with a function. For example, in Java or C++, when you add a private instance variable and a method to a class, you are associating state with functionality.

In C and most other common languages, after a function returns, all the local variables are no longer accessible because the stack-frame is destroyed. In JavaScript, if you declare a function within another function, then the local variables of the outer function can remain accessible after returning from it. In this way, in the code above, secret remains available to the function object inner, after it has been returned from foo.

Uses of Closures

Closures are useful whenever you need a private state associated with a function. This is a very common scenario - and remember: JavaScript did not have a class syntax until 2015, and it still does not have a private field syntax. Closures meet this need.

Private Instance Variables

In the following code, the function toString closes over the details of the car.

function Car(manufacturer, model, year, color) {
  return {
    toString() {
      return `${manufacturer} ${model} (${year}, ${color})`
const car = new Car('Aston Martin','V8 Vantage','2012','Quantum Silver')

Functional Programming

In the following code, the function inner closes over both fn and args.

function curry(fn) {
  const args = []
  return function inner(arg) {
    if(args.length === fn.length) return fn(...args)
    return inner

function add(a, b) {
  return a + b

const curriedAdd = curry(add)
console.log(curriedAdd(2)(3)()) // 5

Event-Oriented Programming

In the following code, function onClick closes over variable BACKGROUND_COLOR.

const $ = document.querySelector.bind(document)
const BACKGROUND_COLOR = 'rgba(200,200,242,1)'

function onClick() {
  $('body').style.background = BACKGROUND_COLOR

$('button').addEventListener('click', onClick)
<button>Set background color</button>


In the following example, all the implementation details are hidden inside an immediately executed function expression. The functions tick and toString close over the private state and functions they need to complete their work. Closures have enabled us to modularise and encapsulate our code.

let namespace = {};

(function foo(n) {
  let numbers = []
  function format(n) {
    return Math.trunc(n)
  function tick() {
    numbers.push(Math.random() * 100)
  function toString() {
  n.counter = {

const counter = namespace.counter


Example 1

This example shows that the local variables are not copied in the closure: the closure maintains a reference to the original variables themselves. It is as though the stack-frame stays alive in memory even after the outer function exits.

function foo() {
  let x = 42
  let inner  = function() { console.log(x) }
  x = x+1
  return inner
var f = foo()
f() // logs 43

Example 2

In the following code, three methods log, increment, and update all close over the same lexical environment.

And every time createObject is called, a new execution context (stack frame) is created and a completely new variable x, and a new set of functions (log etc.) are created, that close over this new variable.

function createObject() {
  let x = 42;
  return {
    log() { console.log(x) },
    increment() { x++ },
    update(value) { x = value }

const o = createObject()
o.log() // 43
o.log() // 5
const p = createObject()
p.log() // 42

Example 3

If you are using variables declared using var, be careful you understand which variable you are closing over. Variables declared using var are hoisted. This is much less of a problem in modern JavaScript due to the introduction of let and const.

In the following code, each time around the loop, a new function inner is created, which closes over i. But because var i is hoisted outside the loop, all of these inner functions close over the same variable, meaning that the final value of i (3) is printed, three times.

function foo() {
  var result = []
  for (var i = 0; i < 3; i++) {
    result.push(function inner() { console.log(i) } )
  return result

const result = foo()
// The following will print `3`, three times...
for (var i = 0; i < 3; i++) {

Final points:

  • Whenever a function is declared in JavaScript closure is created.
  • Returning a function from inside another function is the classic example of closure, because the state inside the outer function is implicitly available to the returned inner function, even after the outer function has completed execution.
  • Whenever you use eval() inside a function, a closure is used. The text you eval can reference local variables of the function, and in the non-strict mode, you can even create new local variables by using eval('var foo = …').
  • When you use new Function(…) (the Function constructor) inside a function, it does not close over its lexical environment: it closes over the global context instead. The new function cannot reference the local variables of the outer function.
  • A closure in JavaScript is like keeping a reference (NOT a copy) to the scope at the point of function declaration, which in turn keeps a reference to its outer scope, and so on, all the way to the global object at the top of the scope chain.
  • A closure is created when a function is declared; this closure is used to configure the execution context when the function is invoked.
  • A new set of local variables is created every time a function is called.


21.09.2008 14:18

Every function in JavaScript maintains a link to its outer lexical environment. A lexical environment is a map of all the names (eg. variables, parameters) within a scope, with their values.

So, whenever you see the function keyword, code inside that function has access to variables declared outside the function.

function foo(x) {
  var tmp = 3;

  function bar(y) {
    console.log(x + y + (++tmp)); // will log 16



This will log 16 because function bar closes over the parameter x and the variable tmp, both of which exist in the lexical environment of outer function foo.

Function bar, together with its link with the lexical environment of function foo is a closure.

A function doesn't have to return in order to create a closure. Simply by virtue of its declaration, every function closes over its enclosing lexical environment, forming a closure.

function foo(x) {
  var tmp = 3;

  return function (y) {
    console.log(x + y + (++tmp)); // will also log 16

var bar = foo(2);
bar(10); // 16
bar(10); // 17

The above function will also log 16, because the code inside bar can still refer to argument x and variable tmp, even though they are no longer directly in scope.

However, since tmp is still hanging around inside bar's closure, it is available to be incremented. It will be incremented each time you call bar.

The simplest example of a closure is this:

var a = 10;

function test() {
  console.log(a); // will output 10
  console.log(b); // will output 6
var b = 6;

When a JavaScript function is invoked, a new execution context ec is created. Together with the function arguments and the target object, this execution context also receives a link to the lexical environment of the calling execution context, meaning the variables declared in the outer lexical environment (in the above example, both a and b) are available from ec.

Every function creates a closure because every function has a link to its outer lexical environment.

Note that variables themselves are visible from within a closure, not copies.

21.09.2008 15:16
'A function doesn't have to return a function to be a closure ', was much needed! by KJ Sudarshan, 02.05.2021 07:48

FOREWORD: this answer was written when the question was:

Like the old Albert said : "If you can't explain it to a six-year old, you really don't understand it yourself.”. Well I tried to explain JS closures to a 27 years old friend and completely failed.

Can anybody consider that I am 6 and strangely interested in that subject ?

I'm pretty sure I was one of the only people that attempted to take the initial question literally. Since then, the question has mutated several times, so my answer may now seem incredibly silly & out of place. Hopefully the general idea of the story remains fun for some.

I'm a big fan of analogy and metaphor when explaining difficult concepts, so let me try my hand with a story.

Once upon a time:

There was a princess...

function princess() {

She lived in a wonderful world full of adventures. She met her Prince Charming, rode around her world on a unicorn, battled dragons, encountered talking animals, and many other fantastical things.

    var adventures = [];

    function princeCharming() { /* ... */ }

    var unicorn = { /* ... */ },
        dragons = [ /* ... */ ],
        squirrel = "Hello!";

    /* ... */

But she would always have to return back to her dull world of chores and grown-ups.

    return {

And she would often tell them of her latest amazing adventure as a princess.

        story: function() {
            return adventures[adventures.length - 1];

But all they would see is a little girl...

var littleGirl = princess();

...telling stories about magic and fantasy.


And even though the grown-ups knew of real princesses, they would never believe in the unicorns or dragons because they could never see them. The grown-ups said that they only existed inside the little girl's imagination.

But we know the real truth; that the little girl with the princess inside... really a princess with a little girl inside.

24.06.2011 18:49
I love this explanation, truly. For those who read it and don't follow, the analogy is this: the princess() function is a complex scope containing private data. Outside the function, the private data can't be seen or accessed. The princess keeps the unicorns, dragons, adventures etc. in her imagination (private data) and the grown-ups can't see them for themselves. BUT the princess's imagination is captured in the closure for the story() function, which is the only interface the littleGirl instance exposes into the world of magic. by Patrick M, 28.02.2013 07:49
Having undefined values makes it more difficult to understand. Here is the true story by Hugolpz, 02.09.2020 19:13
Oh nice, I was that close to make an edit to remove the what I thought to be the extra space in the beginning. Nice job, +1 by Tiago Martins Peres 李大仁, 23.10.2020 07:34
And Prince Charming can add to her adventures, can kill all the dragons to save her from dangers like below: function princeCharming { adventures.push('Honeymoon Trip', 'Skydiving', 'Visiting Somalia'); const pickADragonToKill = dragons.pop(); } by Shivam, 13.01.2021 05:15

Taking the question seriously, we should find out what a typical 6-year-old is capable of cognitively, though admittedly, one who is interested in JavaScript is not so typical.

On Childhood Development: 5 to 7 Years it says:

Your child will be able to follow two-step directions. For example, if you say to your child, "Go to the kitchen and get me a trash bag" they will be able to remember that direction.

We can use this example to explain closures, as follows:

The kitchen is a closure that has a local variable, called trashBags. There is a function inside the kitchen called getTrashBag that gets one trash bag and returns it.

We can code this in JavaScript like this:

function makeKitchen() {
  var trashBags = ['A', 'B', 'C']; // only 3 at first

  return {
    getTrashBag: function() {
      return trashBags.pop();

var kitchen = makeKitchen();

console.log(kitchen.getTrashBag()); // returns trash bag C
console.log(kitchen.getTrashBag()); // returns trash bag B
console.log(kitchen.getTrashBag()); // returns trash bag A

Further points that explain why closures are interesting:

  • Each time makeKitchen() is called, a new closure is created with its own separate trashBags.
  • The trashBags variable is local to the inside of each kitchen and is not accessible outside, but the inner function on the getTrashBag property does have access to it.
  • Every function call creates a closure, but there would be no need to keep the closure around unless an inner function, which has access to the inside of the closure, can be called from outside the closure. Returning the object with the getTrashBag function does that here.
02.09.2011 15:23

The Straw Man

I need to know how many times a button has been clicked and do something on every third click...

Fairly Obvious Solution

// Declare counter outside event handler's scope
var counter = 0;
var element = document.getElementById('button');

element.addEventListener("click", function() {
  // Increment outside counter

  if (counter === 3) {
    // Do something every third time
    console.log("Third time's the charm!");

    // Reset counter
    counter = 0;
<button id="button">Click Me!</button>

Now this will work, but it does encroach into the outer scope by adding a variable, whose sole purpose is to keep track of the count. In some situations, this would be preferable as your outer application might need access to this information. But in this case, we are only changing every third click's behavior, so it is preferable to enclose this functionality inside the event handler.

Consider this option

var element = document.getElementById('button');

element.addEventListener("click", (function() {
  // init the count to 0
  var count = 0;

  return function(e) { // <- This function becomes the click handler
    count++; //    and will retain access to the above `count`

    if (count === 3) {
      // Do something every third time
      console.log("Third time's the charm!");

      //Reset counter
      count = 0;
<button id="button">Click Me!</button>

Notice a few things here.

In the above example, I am using the closure behavior of JavaScript. This behavior allows any function to have access to the scope in which it was created, indefinitely. To practically apply this, I immediately invoke a function that returns another function, and because the function I'm returning has access to the internal count variable (because of the closure behavior explained above) this results in a private scope for usage by the resulting function... Not so simple? Let's dilute it down...

A simple one-line closure

//          _______________________Immediately invoked______________________
//         |                                                                |
//         |        Scope retained for use      ___Returned as the____      |
//         |       only by returned function   |    value of func     |     |
//         |             |            |        |                      |     |
//         v             v            v        v                      v     v
var func = (function() { var a = 'val'; return function() { alert(a); }; })();

All variables outside the returned function are available to the returned function, but they are not directly available to the returned function object...

func();  // Alerts "val"
func.a;  // Undefined

Get it? So in our primary example, the count variable is contained within the closure and always available to the event handler, so it retains its state from click to click.

Also, this private variable state is fully accessible, for both readings and assigning to its private scoped variables.

There you go; you're now fully encapsulating this behavior.

Full Blog Post (including jQuery considerations)

26.02.2013 19:40

Closures are hard to explain because they are used to make some behaviour work that everybody intuitively expects to work anyway. I find the best way to explain them (and the way that I learned what they do) is to imagine the situation without them:

const makePlus = function(x) {
    return function(y) { return x + y; };

const plus5 = makePlus(5);

What would happen here if JavaScript didn't know closures? Just replace the call in the last line by its method body (which is basically what function calls do) and you get:

console.log(x + 3);

Now, where's the definition of x? We didn't define it in the current scope. The only solution is to let plus5 carry its scope (or rather, its parent's scope) around. This way, x is well-defined and it is bound to the value 5.

21.09.2008 14:24
"they are used to make some behaviour work that everybody intuitively expects to work anyway" Appreciate this comment, as that was partly what I was struggling with. I felt like I was missing something, but it turns out I wasn't! by Shane, 10.07.2020 18:45


A closure is a link between a function and its outer lexical (ie. as-written) environment, such that the identifiers (variables, parameters, function declarations etc) defined within that environment are visible from within the function, regardless of when or from where the function is invoked.


In the terminology of the ECMAScript specification, a closure can be said to be implemented by the [[Environment]] reference of every function-object, which points to the lexical environment within which the function is defined.

When a function is invoked via the internal [[Call]] method, the [[Environment]] reference on the function-object is copied into the outer environment reference of the environment record of the newly-created execution context (stack frame).

In the following example, function f closes over the lexical environment of the global execution context:

function f() {}

In the following example, function h closes over the lexical environment of function g, which, in turn, closes over the lexical environment of the global execution context.

function g() {
    function h() {}

If an inner function is returned by an outer, then the outer lexical environment will persist after the outer function has returned. This is because the outer lexical environment needs to be available if the inner function is eventually invoked.

In the following example, function j closes over the lexical environment of function i, meaning that variable x is visible from inside function j, long after function i has completed execution:

function i() {
    var x = 'mochacchino'
    return function j() {
        console.log('Printing the value of x, from within function j: ', x)

const k = i()
setTimeout(k, 500) // invoke k (which is j) after 500ms

In a closure, the variables in the outer lexical environment themselves are available, not copies.

function l() {
  var y = 'vanilla';

  return {
    setY: function(value) {
      y = value;
    logY: function(value) {
      console.log('The value of y is: ', y);

const o = l()
o.logY() // The value of y is: vanilla
o.logY() // The value of y is: chocolate

The chain of lexical environments, linked between execution contexts via outer environment references, forms a scope chain and defines the identifiers visible from any given function.

Please note that in an attempt to improve clarity and accuracy, this answer has been substantially changed from the original.

21.09.2008 14:20

OK, 6-year-old closures fan. Do you want to hear the simplest example of closure?

Let's imagine the next situation: a driver is sitting in a car. That car is inside a plane. Plane is in the airport. The ability of driver to access things outside his car, but inside the plane, even if that plane leaves an airport, is a closure. That's it. When you turn 27, look at the more detailed explanation or at the example below.

Here is how I can convert my plane story into the code.

var plane = function(defaultAirport) {

  var lastAirportLeft = defaultAirport;

  var car = {
    driver: {
      startAccessPlaneInfo: function() {
        setInterval(function() {
          console.log("Last airport was " + lastAirportLeft);
        }, 2000);

  return {
    leaveTheAirport: function(airPortName) {
      lastAirportLeft = airPortName;
}("Boryspil International Airport");

plane.leaveTheAirport("John F. Kennedy");

06.06.2013 10:22

This is an attempt to clear up several (possible) misunderstandings about closures that appear in some of the other answers.

  • A closure is not only created when you return an inner function. In fact, the enclosing function does not need to return at all in order for its closure to be created. You might instead assign your inner function to a variable in an outer scope, or pass it as an argument to another function where it could be called immediately or any time later. Therefore, the closure of the enclosing function is probably created as soon as the enclosing function is called since any inner function has access to that closure whenever the inner function is called, before or after the enclosing function returns.
  • A closure does not reference a copy of the old values of variables in its scope. The variables themselves are part of the closure, and so the value seen when accessing one of those variables is the latest value at the time it is accessed. This is why inner functions created inside of loops can be tricky, since each one has access to the same outer variables rather than grabbing a copy of the variables at the time the function is created or called.
  • The "variables" in a closure include any named functions declared within the function. They also include arguments of the function. A closure also has access to its containing closure's variables, all the way up to the global scope.
  • Closures use memory, but they don't cause memory leaks since JavaScript by itself cleans up its own circular structures that are not referenced. Internet Explorer memory leaks involving closures are created when it fails to disconnect DOM attribute values that reference closures, thus maintaining references to possibly circular structures.
08.04.2010 13:54

I wrote a blog post a while back explaining closures. Here's what I said about closures in terms of why you'd want one.

Closures are a way to let a function have persistent, private variables - that is, variables that only one function knows about, where it can keep track of info from previous times that it was run.

In that sense, they let a function act a bit like an object with private attributes.

Full post:

So what are these closure thingys?

07.02.2011 20:57

Closures are simple:

The following simple example covers all the main points of JavaScript closures.*  

Here is a factory that produces calculators that can add and multiply:

function make_calculator() {
  var n = 0; // this calculator stores a single number n
  return {
    add: function(a) {
      n += a;
      return n;
    multiply: function(a) {
      n *= a;
      return n;

first_calculator = make_calculator();
second_calculator = make_calculator();

first_calculator.add(3); // returns 3
second_calculator.add(400); // returns 400

first_calculator.multiply(11); // returns 33
second_calculator.multiply(10); // returns 4000

The key point: Each call to make_calculator creates a new local variable n, which continues to be usable by that calculator's add and multiply functions long after make_calculator returns.

If you are familiar with stack frames, these calculators seem strange: How can they keep accessing n after make_calculator returns? The answer is to imagine that JavaScript doesn't use "stack frames", but instead uses "heap frames", which can persist after the function call that made them returns.

Inner functions like add and multiply, which access variables declared in an outer function**, are called closures.

That is pretty much all there is to closures.

* For example, it covers all the points in the "Closures for Dummies" article given in another answer, except example 6, which simply shows that variables can be used before they are declared, a nice fact to know but completely unrelated to closures. It also covers all the points in the accepted answer, except for the points (1) that functions copy their arguments into local variables (the named function arguments), and (2) that copying numbers creates a new number, but copying an object reference gives you another reference to the same object. These are also good to know but again completely unrelated to closures. It is also very similar to the example in this answer but a bit shorter and less abstract. It does not cover the point of this answer or this comment, which is that JavaScript makes it difficult to plug the current value of a loop variable into your inner function: The "plugging in" step can only be done with a helper function that encloses your inner function and is invoked on each loop iteration. (Strictly speaking, the inner function accesses the helper function's copy of the variable, rather than having anything plugged in.) Again, very useful when creating closures, but not part of what a closure is or how it works. There is additional confusion due to closures working differently in functional languages like ML, where variables are bound to values rather than to storage space, providing a constant stream of people who understand closures in a way (namely the "plugging in" way) that is simply incorrect for JavaScript, where variables are always bound to storage space, and never to values.

** Any outer function, if several are nested, or even in the global context, as this answer points out clearly.

25.06.2013 22:22

Can you explain closures to a 5-year-old?*

I still think Google's explanation works very well and is concise:

*    When a function is defined in another function and it
*    has access to the outer function's context even after
*    the outer function returns.
* An important concept to learn in JavaScript.

function outerFunction(someNum) {
    var someString = 'Hey!';
    var content = document.getElementById('content');
    function innerFunction() {
        content.innerHTML = someNum + ': ' + someString;
        content = null; // Internet Explorer memory leak for DOM reference


Proof that this example creates a closure even if the inner function doesn't return

*A C# question

20.04.2010 08:16

How I'd explain it to a six-year-old:

You know how grown-ups can own a house, and they call it home? When a mom has a child, the child doesn't really own anything, right? But its parents own a house, so whenever someone asks the child "Where's your home?", he/she can answer "that house!", and point to the house of its parents. A "Closure" is the ability of the child to always (even if abroad) be able to say it has a home, even though it's really the parent's who own the house.

17.02.2014 21:14

I tend to learn better by GOOD/BAD comparisons. I like to see working code followed by non-working code that someone is likely to encounter. I put together a jsFiddle that does a comparison and tries to boil down the differences to the simplest explanations I could come up with.

Closures done right:

console.log('CLOSURES DONE RIGHT');

var arr = [];

function createClosure(n) {
    return function () {
        return 'n = ' + n;

for (var index = 0; index < 10; index++) {
    arr[index] = createClosure(index);

for (var index in arr) {
  • In the above code createClosure(n) is invoked in every iteration of the loop. Note that I named the variable n to highlight that it is a new variable created in a new function scope and is not the same variable as index which is bound to the outer scope.

  • This creates a new scope and n is bound to that scope; this means we have 10 separate scopes, one for each iteration.

  • createClosure(n) returns a function that returns the n within that scope.

  • Within each scope n is bound to whatever value it had when createClosure(n) was invoked so the nested function that gets returned will always return the value of n that it had when createClosure(n) was invoked.

Closures done wrong:

console.log('CLOSURES DONE WRONG');

function createClosureArray() {
    var badArr = [];

    for (var index = 0; index < 10; index++) {
        badArr[index] = function () {
            return 'n = ' + index;
    return badArr;

var badArr = createClosureArray();

for (var index in badArr) {
  • In the above code the loop was moved within the createClosureArray() function and the function now just returns the completed array, which at first glance seems more intuitive.

  • What might not be obvious is that since createClosureArray() is only invoked once only one scope is created for this function instead of one for every iteration of the loop.

  • Within this function a variable named index is defined. The loop runs and adds functions to the array that return index. Note that index is defined within the createClosureArray function which only ever gets invoked one time.

  • Because there was only one scope within the createClosureArray() function, index is only bound to a value within that scope. In other words, each time the loop changes the value of index, it changes it for everything that references it within that scope.

  • All of the functions added to the array return the SAME index variable from the parent scope where it was defined instead of 10 different ones from 10 different scopes like the first example. The end result is that all 10 functions return the same variable from the same scope.

  • After the loop finished and index was done being modified the end value was 10, therefore every function added to the array returns the value of the single index variable which is now set to 10.


n = 0
n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8
n = 9

n = 10
n = 10
n = 10
n = 10
n = 10
n = 10
n = 10
n = 10
n = 10
n = 10

19.06.2013 20:45

Wikipedia on closures:

In computer science, a closure is a function together with a referencing environment for the nonlocal names (free variables) of that function.

Technically, in JavaScript, every function is a closure. It always has an access to variables defined in the surrounding scope.

Since scope-defining construction in JavaScript is a function, not a code block like in many other languages, what we usually mean by closure in JavaScript is a function working with nonlocal variables defined in already executed surrounding function.

Closures are often used for creating functions with some hidden private data (but it's not always the case).

var db = (function() {
    // Create a hidden object, which will hold the data
    // it's inaccessible from the outside.
    var data = {};

    // Make a function, which will provide some access to the data.
    return function(key, val) {
        if (val === undefined) { return data[key] } // Get
        else { return data[key] = val } // Set
    // We are calling the anonymous surrounding function,
    // returning the above inner function, which is a closure.

db('x')    // -> undefined
db('x', 1) // Set x to 1
db('x')    // -> 1
// It's impossible to access the data object itself.
// We are able to get or set individual it.


The example above is using an anonymous function, which was executed once. But it does not have to be. It can be named (e.g. mkdb) and executed later, generating a database function each time it is invoked. Every generated function will have its own hidden database object. Another usage example of closures is when we don't return a function, but an object containing multiple functions for different purposes, each of those function having access to the same data.

30.07.2011 14:27

I put together an interactive JavaScript tutorial to explain how closures work. What's a Closure?

Here's one of the examples:

var create = function (x) {
    var f = function () {
        return x; // We can refer to x here!
    return f;
// 'create' takes one argument, creates a function

var g = create(42);
// g is a function that takes no arguments now

var y = g();
// y is 42 here
26.07.2011 04:37

The children will always remember the secrets they have shared with their parents, even after their parents are gone. This is what closures are for functions.

The secrets for JavaScript functions are the private variables

var parent = function() {
 var name = "Mary"; // secret

Every time you call it, local variable "name" is created and given name "Mary". And every time the function exits the variable is lost and the name is forgotten.

As you may guess, because the variables are re-created every time the function is called, and nobody else will know them, there must be a secret place where they are stored. It could be called Chamber of Secrets or stack or local scope but it doesn't really matter. We know they are there, somewhere, hidden in the memory.

But, in JavaScript there is this very special thing that functions which are created inside other functions, can also know the local variables of their parents and keep them as long as they live.

var parent = function() {
  var name = "Mary";
  var child = function(childName) {
    // I can also see that "name" is "Mary"

So, as long as we are in the parent -function, it can create one or more child functions which do share the secret variables from the secret place.

But the sad thing is, if the child is also a private variable of its parent function, it would also die when the parent ends, and the secrets would die with them.

So to live, the child has to leave before it's too late

var parent = function() {
  var name = "Mary";
  var child = function(childName) {
    return "My name is " + childName  +", child of " + name; 
  return child; // child leaves the parent ->
var child = parent(); // < - and here it is outside 

And now, even though Mary is "no longer running", the memory of her is not lost and her child will always remember her name and other secrets they shared during their time together.

So, if you call the child "Alice", she will respond

child("Alice") => "My name is Alice, child of Mary"

That's all there is to tell.

11.05.2015 16:35

I do not understand why the answers are so complex here.

Here is a closure:

var a = 42;

function b() { return a; }

Yes. You probably use that many times a day.

There is no reason to believe closures are a complex design hack to address specific problems. No, closures are just about using a variable that comes from a higher scope from the perspective of where the function was declared (not run).

Now what it allows you to do can be more spectacular, see other answers.

13.02.2015 19:39

Example for the first point by dlaliberte:

A closure is not only created when you return an inner function. In fact, the enclosing function does not need to return at all. You might instead assign your inner function to a variable in an outer scope, or pass it as an argument to another function where it could be used immediately. Therefore, the closure of the enclosing function probably already exists at the time that enclosing function was called since any inner function has access to it as soon as it is called.

var i;
function foo(x) {
    var tmp = 3;
    i = function (y) {
        console.log(x + y + (++tmp));
20.04.2010 08:10

A closure is where an inner function has access to variables in its outer function. That's probably the simplest one-line explanation you can get for closures.

21.09.2008 21:39

I know there are plenty of solutions already, but I guess that this small and simple script can be useful to demonstrate the concept:

// makeSequencer will return a "sequencer" function
var makeSequencer = function() {
    var _count = 0; // not accessible outside this function
    var sequencer = function () {
        return _count++;
    return sequencer;

var fnext = makeSequencer();
var v0 = fnext();     // v0 = 0;
var v1 = fnext();     // v1 = 1;
var vz = fnext._count // vz = undefined
03.05.2012 18:16

You're having a sleep over and you invite Dan. You tell Dan to bring one XBox controller.

Dan invites Paul. Dan asks Paul to bring one controller. How many controllers were brought to the party?

function sleepOver(howManyControllersToBring) {

    var numberOfDansControllers = howManyControllersToBring;

    return function danInvitedPaul(numberOfPaulsControllers) {
        var totalControllers = numberOfDansControllers + numberOfPaulsControllers;
        return totalControllers;

var howManyControllersToBring = 1;

var inviteDan = sleepOver(howManyControllersToBring);

// The only reason Paul was invited is because Dan was invited. 
// So we set Paul's invitation = Dan's invitation.

var danInvitedPaul = inviteDan(howManyControllersToBring);

alert("There were " + danInvitedPaul + " controllers brought to the party.");
20.07.2011 03:51

The author of Closures has explained closures pretty well, explaining the reason why we need them and also explaining LexicalEnvironment which is necessary to understanding closures.
Here is the summary:

What if a variable is accessed, but it isn’t local? Like here:

Enter image description here

In this case, the interpreter finds the variable in the outer LexicalEnvironment object.

The process consists of two steps:

  1. First, when a function f is created, it is not created in an empty space. There is a current LexicalEnvironment object. In the case above, it’s window (a is undefined at the time of function creation).

Enter image description here

When a function is created, it gets a hidden property, named [[Scope]], which references the current LexicalEnvironment.

Enter image description here

If a variable is read, but can not be found anywhere, an error is generated.

Nested functions

Functions can be nested one inside another, forming a chain of LexicalEnvironments which can also be called a scope chain.

Enter image description here

So, function g has access to g, a and f.


A nested function may continue to live after the outer function has finished:

Enter image description here

Marking up LexicalEnvironments:

Enter image description here

As we see, this.say is a property in the user object, so it continues to live after User completed.

And if you remember, when this.say is created, it (as every function) gets an internal reference this.say.[[Scope]] to the current LexicalEnvironment. So, the LexicalEnvironment of the current User execution stays in memory. All variables of User also are its properties, so they are also carefully kept, not junked as usually.

The whole point is to ensure that if the inner function wants to access an outer variable in the future, it is able to do so.

To summarize:

  1. The inner function keeps a reference to the outer LexicalEnvironment.
  2. The inner function may access variables from it any time even if the outer function is finished.
  3. The browser keeps the LexicalEnvironment and all its properties (variables) in memory until there is an inner function which references it.

This is called a closure.

15.08.2015 13:38

JavaScript functions can access their:

  1. Arguments
  2. Locals (that is, their local variables and local functions)
  3. Environment, which includes:
    • globals, including the DOM
    • anything in outer functions

If a function accesses its environment, then the function is a closure.

Note that outer functions are not required, though they do offer benefits I don't discuss here. By accessing data in its environment, a closure keeps that data alive. In the subcase of outer/inner functions, an outer function can create local data and eventually exit, and yet, if any inner function(s) survive after the outer function exits, then the inner function(s) keep the outer function's local data alive.

Example of a closure that uses the global environment:

Imagine that the Stack Overflow Vote-Up and Vote-Down button events are implemented as closures, voteUp_click and voteDown_click, that have access to external variables isVotedUp and isVotedDown, which are defined globally. (For simplicity's sake, I am referring to StackOverflow's Question Vote buttons, not the array of Answer Vote buttons.)

When the user clicks the VoteUp button, the voteUp_click function checks whether isVotedDown == true to determine whether to vote up or merely cancel a down vote. Function voteUp_click is a closure because it is accessing its environment.

var isVotedUp = false;
var isVotedDown = false;

function voteUp_click() {
  if (isVotedUp)
  else if (isVotedDown)

function voteDown_click() {
  if (isVotedDown)
  else if (isVotedUp)

function SetUpVote(status) {
  isVotedUp = status;
  // Do some CSS stuff to Vote-Up button

function SetDownVote(status) {
  isVotedDown = status;
  // Do some CSS stuff to Vote-Down button

All four of these functions are closures as they all access their environment.

24.02.2011 01:37

As a father of a 6-year-old, currently teaching young children (and a relative novice to coding with no formal education so corrections will be required), I think the lesson would stick best through hands-on play. If the 6-year-old is ready to understand what a closure is, then they are old enough to have a go themselves. I'd suggest pasting the code into, explaining a bit, and leaving them alone to concoct a unique song. The explanatory text below is probably more appropriate for a 10 year old.

function sing(person) {

    var firstPart = "There was " + person + " who swallowed ";

    var fly = function() {
        var creature = "a fly";
        var result = "Perhaps she'll die";
        alert(firstPart + creature + "\n" + result);

    var spider = function() {
        var creature = "a spider";
        var result = "that wiggled and jiggled and tickled inside her";
        alert(firstPart + creature + "\n" + result);

    var bird = function() {
        var creature = "a bird";
        var result = "How absurd!";
        alert(firstPart + creature + "\n" + result);

    var cat = function() {
        var creature = "a cat";
        var result = "Imagine That!";
        alert(firstPart + creature + "\n" + result);


var person="an old lady";



DATA: Data is a collection of facts. It can be numbers, words, measurements, observations or even just descriptions of things. You can't touch it, smell it or taste it. You can write it down, speak it and hear it. You could use it to create touch smell and taste using a computer. It can be made useful by a computer using code.

CODE: All the writing above is called code. It is written in JavaScript.

JAVASCRIPT: JavaScript is a language. Like English or French or Chinese are languages. There are lots of languages that are understood by computers and other electronic processors. For JavaScript to be understood by a computer it needs an interpreter. Imagine if a teacher who only speaks Russian comes to teach your class at school. When the teacher says "все садятся", the class would not understand. But luckily you have a Russian pupil in your class who tells everyone this means "everybody sit down" - so you all do. The class is like a computer and the Russian pupil is the interpreter. For JavaScript the most common interpreter is called a browser.

BROWSER: When you connect to the Internet on a computer, tablet or phone to visit a website, you use a browser. Examples you may know are Internet Explorer, Chrome, Firefox and Safari. The browser can understand JavaScript and tell the computer what it needs to do. The JavaScript instructions are called functions.

FUNCTION: A function in JavaScript is like a factory. It might be a little factory with only one machine inside. Or it might contain many other little factories, each with many machines doing different jobs. In a real life clothes factory you might have reams of cloth and bobbins of thread going in and T-shirts and jeans coming out. Our JavaScript factory only processes data, it can't sew, drill a hole or melt metal. In our JavaScript factory data goes in and data comes out.

All this data stuff sounds a bit boring, but it is really very cool; we might have a function that tells a robot what to make for dinner. Let's say I invite you and your friend to my house. You like chicken legs best, I like sausages, your friend always wants what you want and my friend does not eat meat.

I haven't got time to go shopping, so the function needs to know what we have in the fridge to make decisions. Each ingredient has a different cooking time and we want everything to be served hot by the robot at the same time. We need to provide the function with the data about what we like, the function could 'talk' to the fridge, and the function could control the robot.

A function normally has a name, parentheses and braces. Like this:

function cookMeal() {  /*  STUFF INSIDE THE FUNCTION  */  }

Note that /*...*/ and // stop code being read by the browser.

NAME: You can call a function just about whatever word you want. The example "cookMeal" is typical in joining two words together and giving the second one a capital letter at the beginning - but this is not necessary. It can't have a space in it, and it can't be a number on its own.

PARENTHESES: "Parentheses" or () are the letter box on the JavaScript function factory's door or a post box in the street for sending packets of information to the factory. Sometimes the postbox might be marked for example cookMeal(you, me, yourFriend, myFriend, fridge, dinnerTime), in which case you know what data you have to give it.

BRACES: "Braces" which look like this {} are the tinted windows of our factory. From inside the factory you can see out, but from the outside you can't see in.


Our code begins with the word function, so we know that it is one! Then the name of the function sing - that's my own description of what the function is about. Then parentheses (). The parentheses are always there for a function. Sometimes they are empty, and sometimes they have something in. This one has a word in: (person). After this there is a brace like this { . This marks the start of the function sing(). It has a partner which marks the end of sing() like this }

function sing(person) {  /* STUFF INSIDE THE FUNCTION */  }

So this function might have something to do with singing, and might need some data about a person. It has instructions inside to do something with that data.

Now, after the function sing(), near the end of the code is the line

var person="an old lady";

VARIABLE: The letters var stand for "variable". A variable is like an envelope. On the outside this envelope is marked "person". On the inside it contains a slip of paper with the information our function needs, some letters and spaces joined together like a piece of string (it's called a string) that make a phrase reading "an old lady". Our envelope could contain other kinds of things like numbers (called integers), instructions (called functions), lists (called arrays). Because this variable is written outside of all the braces {}, and because you can see out through the tinted windows when you are inside the braces, this variable can be seen from anywhere in the code. We call this a 'global variable'.

GLOBAL VARIABLE: person is a global variable, meaning that if you change its value from "an old lady" to "a young man", the person will keep being a young man until you decide to change it again and that any other function in the code can see that it's a young man. Press the F12 button or look at the Options settings to open the developer console of a browser and type "person" to see what this value is. Type person="a young man" to change it and then type "person" again to see that it has changed.

After this we have the line


This line is calling the function, as if it were calling a dog

"Come on sing, Come and get person!"

When the browser has loaded the JavaScript code an reached this line, it will start the function. I put the line at the end to make sure that the browser has all the information it needs to run it.

Functions define actions - the main function is about singing. It contains a variable called firstPart which applies to the singing about the person that applies to each of the verses of the song: "There was " + person + " who swallowed". If you type firstPart into the console, you won't get an answer because the variable is locked up in a function - the browser can't see inside the tinted windows of the braces.

CLOSURES: The closures are the smaller functions that are inside the big sing() function. The little factories inside the big factory. They each have their own braces which mean that the variables inside them can't be seen from the outside. That's why the names of the variables (creature and result) can be repeated in the closures but with different values. If you type these variable names in the console window, you won't get its value because it's hidden by two layers of tinted windows.

The closures all know what the sing() function's variable called firstPart is, because they can see out from their tinted windows.

After the closures come the lines


The sing() function will call each of these functions in the order they are given. Then the sing() function's work will be done.

28.10.2014 23:53

Okay, talking with a 6-year old child, I would possibly use following associations.

Imagine - you are playing with your little brothers and sisters in the entire house, and you are moving around with your toys and brought some of them into your older brother's room. After a while your brother returned from the school and went to his room, and he locked inside it, so now you could not access toys left there anymore in a direct way. But you could knock the door and ask your brother for that toys. This is called toy's closure; your brother made it up for you, and he is now into outer scope.

Compare with a situation when a door was locked by draft and nobody inside (general function execution), and then some local fire occur and burn down the room (garbage collector:D), and then a new room was build and now you may leave another toys there (new function instance), but never get the same toys which were left in the first room instance.

For an advanced child I would put something like the following. It is not perfect, but it makes you feel about what it is:

function playingInBrothersRoom (withToys) {
  // We closure toys which we played in the brother's room. When he come back and lock the door
  // your brother is supposed to be into the outer [[scope]] object now. Thanks god you could communicate with him.
  var closureToys = withToys || [],
      returnToy, countIt, toy; // Just another closure helpers, for brother's inner use.

  var brotherGivesToyBack = function (toy) {
    // New request. There is not yet closureToys on brother's hand yet. Give him a time.
    returnToy = null;
    if (toy && closureToys.length > 0) { // If we ask for a specific toy, the brother is going to search for it.

      for ( countIt = closureToys.length; countIt; countIt--) {
        if (closureToys[countIt - 1] == toy) {
          returnToy = 'Take your ' + closureToys.splice(countIt - 1, 1) + ', little boy!';
      returnToy = returnToy || 'Hey, I could not find any ' + toy + ' here. Look for it in another room.';
    else if (closureToys.length > 0) { // Otherwise, just give back everything he has in the room.
      returnToy = 'Behold! ' + closureToys.join(', ') + '.';
      closureToys = [];
    else {
      returnToy = 'Hey, lil shrimp, I gave you everything!';
  return brotherGivesToyBack;
// You are playing in the house, including the brother's room.
var toys = ['teddybear', 'car', 'jumpingrope'],
    askBrotherForClosuredToy = playingInBrothersRoom(toys);

// The door is locked, and the brother came from the school. You could not cheat and take it out directly.
console.log(askBrotherForClosuredToy.closureToys); // Undefined

// But you could ask your brother politely, to give it back.
askBrotherForClosuredToy('teddybear'); // Hooray, here it is, teddybear
askBrotherForClosuredToy('ball'); // The brother would not be able to find it.
askBrotherForClosuredToy(); // The brother gives you all the rest
askBrotherForClosuredToy(); // Nothing left in there

As you can see, the toys left in the room are still accessible via the brother and no matter if the room is locked. Here is a jsbin to play around with it.

04.03.2013 18:27

A function in JavaScript is not just a reference to a set of instructions (as in C language), but it also includes a hidden data structure which is composed of references to all nonlocal variables it uses (captured variables). Such two-piece functions are called closures. Every function in JavaScript can be considered a closure.

Closures are functions with a state. It is somewhat similar to "this" in the sense that "this" also provides state for a function but function and "this" are separate objects ("this" is just a fancy parameter, and the only way to bind it permanently to a function is to create a closure). While "this" and function always live separately, a function cannot be separated from its closure and the language provides no means to access captured variables.

Because all these external variables referenced by a lexically nested function are actually local variables in the chain of its lexically enclosing functions (global variables can be assumed to be local variables of some root function), and every single execution of a function creates new instances of its local variables, it follows that every execution of a function returning (or otherwise transferring it out, such as registering it as a callback) a nested function creates a new closure (with its own potentially unique set of referenced nonlocal variables which represent its execution context).

Also, it must be understood that local variables in JavaScript are created not on the stack frame, but on the heap and destroyed only when no one is referencing them. When a function returns, references to its local variables are decremented, but they can still be non-null if during the current execution they became part of a closure and are still referenced by its lexically nested functions (which can happen only if the references to these nested functions were returned or otherwise transferred to some external code).

An example:

function foo (initValue) {
   //This variable is not destroyed when the foo function exits.
   //It is 'captured' by the two nested functions returned below.
   var value = initValue;

   //Note that the two returned functions are created right now.
   //If the foo function is called again, it will return
   //new functions referencing a different 'value' variable.
   return {
       getValue: function () { return value; },
       setValue: function (newValue) { value = newValue; }

function bar () {
    //foo sets its local variable 'value' to 5 and returns an object with
    //two functions still referencing that local variable
    var obj = foo(5);

    //Extracting functions just to show that no 'this' is involved here
    var getValue = obj.getValue;
    var setValue = obj.setValue;

    alert(getValue()); //Displays 5
    alert(getValue()); //Displays 10

    //At this point getValue and setValue functions are destroyed
    //(in reality they are destroyed at the next iteration of the garbage collector).
    //The local variable 'value' in the foo is no longer referenced by
    //anything and is destroyed too.

25.10.2012 18:12

An answer for a six-year-old (assuming he knows what a function is and what a variable is, and what data is):

Functions can return data. One kind of data you can return from a function is another function. When that new function gets returned, all the variables and arguments used in the function that created it don't go away. Instead, that parent function "closes." In other words, nothing can look inside of it and see the variables it used except for the function it returned. That new function has a special ability to look back inside the function that created it and see the data inside of it.

function the_closure() {
  var x = 4;
  return function () {
    return x; // Here, we look back inside the_closure for the value of x

var myFn = the_closure();
myFn(); //=> 4

Another really simple way to explain it is in terms of scope:

Any time you create a smaller scope inside of a larger scope, the smaller scope will always be able to see what is in the larger scope.

16.05.2013 20:52

I'd simply point them to the Mozilla Closures page. It's the best, most concise and simple explanation of closure basics and practical usage that I've found. It is highly recommended to anyone learning JavaScript.

And yes, I'd even recommend it to a 6-year old -- if the 6-year old is learning about closures, then it's logical they're ready to comprehend the concise and simple explanation provided in the article.

09.03.2013 03:24

Perhaps a little beyond all but the most precocious of six-year-olds, but a few examples that helped make the concept of closure in JavaScript click for me.

A closure is a function that has access to another function's scope (its variables and functions). The easiest way to create a closure is with a function within a function; the reason being that in JavaScript a function always has access to its containing function’s scope.

function outerFunction() {
    var outerVar = "monkey";
    function innerFunction() {


ALERT: monkey

In the above example, outerFunction is called which in turn calls innerFunction. Note how outerVar is available to innerFunction, evidenced by its correctly alerting the value of outerVar.

Now consider the following:

function outerFunction() {
    var outerVar = "monkey";
    function innerFunction() {
        return outerVar;
    return innerFunction;

var referenceToInnerFunction = outerFunction();

ALERT: monkey

referenceToInnerFunction is set to outerFunction(), which simply returns a reference to innerFunction. When referenceToInnerFunction is called, it returns outerVar. Again, as above, this demonstrates that innerFunction has access to outerVar, a variable of outerFunction. Furthermore, it is interesting to note that it retains this access even after outerFunction has finished executing.

And here is where things get really interesting. If we were to get rid of outerFunction, say set it to null, you might think that referenceToInnerFunction would loose its access to the value of outerVar. But this is not the case.

function outerFunction() {
    var outerVar = "monkey";
    function innerFunction() {
        return outerVar;
    return innerFunction;

var referenceToInnerFunction = outerFunction();

outerFunction = null;

ALERT: monkey ALERT: monkey

But how is this so? How can referenceToInnerFunction still know the value of outerVar now that outerFunction has been set to null?

The reason that referenceToInnerFunction can still access the value of outerVar is because when the closure was first created by placing innerFunction inside of outerFunction, innerFunction added a reference to outerFunction’s scope (its variables and functions) to its scope chain. What this means is that innerFunction has a pointer or reference to all of outerFunction’s variables, including outerVar. So even when outerFunction has finished executing, or even if it is deleted or set to null, the variables in its scope, like outerVar, stick around in memory because of the outstanding reference to them on the part of the innerFunction that has been returned to referenceToInnerFunction. To truly release outerVar and the rest of outerFunction’s variables from memory you would have to get rid of this outstanding reference to them, say by setting referenceToInnerFunction to null as well.


Two other things about closures to note. First, the closure will always have access to the last values of its containing function.

function outerFunction() {
    var outerVar = "monkey";
    function innerFunction() {
    outerVar = "gorilla";



ALERT: gorilla

Second, when a closure is created, it retains a reference to all of its enclosing function’s variables and functions; it doesn’t get to pick and choose. And but so, closures should be used sparingly, or at least carefully, as they can be memory intensive; a lot of variables can be kept in memory long after a containing function has finished executing.

02.03.2015 18:08

I believe in shorter explanations, so see the below image.

Enter image description here

function f1() ..> Light Red Box

function f2() ..> Red Small Box

Here we have two functions, f1() and f2(). f2() is inner to f1(). f1() has a variable, var x = 10.

When invoking the function f1(), f2() can access the value of var x = 10.

Here is the code:

function f1() {
    var x=10;

    function f2() {

    return f2


f1() invoking here:

Enter image description here

17.04.2015 07:41

A closure is a function having access to the parent scope, even after the parent function has closed.

So basically a closure is a function of another function. We can say like a child function.

A closure is an inner function that has access to the outer (enclosing) function’s variables—scope chain. The closure has three scope chains: it has access to its own scope (variables defined between its curly brackets), it has access to the outer function’s variables, and it has access to the global variables.

The inner function has access not only to the outer function’s variables but also to the outer function’s parameters. Note that the inner function cannot call the outer function’s arguments object, however, even though it can call the outer function’s parameters directly.

You create a closure by adding a function inside another function.

Also, it's very useful method which is used in many famous frameworks including Angular, Node.js and jQuery:

Closures are used extensively in Node.js; they are workhorses in Node.js’ asynchronous, non-blocking architecture. Closures are also frequently used in jQuery and just about every piece of JavaScript code you read.

But how the closures look like in a real-life coding? Look at this simple sample code:

function showName(firstName, lastName) {
      var nameIntro = "Your name is ";
      // this inner function has access to the outer function's variables, including the parameter
      function makeFullName() {
          return nameIntro + firstName + " " + lastName;
      return makeFullName();

  console.log(showName("Michael", "Jackson")); // Your name is Michael Jackson

Also, this is classic closure way in jQuery which every javascript and jQuery developers used it a lot:

$(function() {
    var selections = [];
    $(".niners").click(function() { // this closure has access to the selections variable
        selections.push(this.prop("name")); // update the selections variable in the outer function's scope

But why we use closures? when we use it in an actual programming? what are the practical use of closures? the below is a good explanation and example by MDN:

Practical closures

Closures are useful because they let you associate some data (the lexical environment) with a function that operates on that data. This has obvious parallels to object oriented programming, where objects allow us to associate some data (the object's properties) with one or more methods.

Consequently, you can use a closure anywhere that you might normally use an object with only a single method.

Situations where you might want to do this are particularly common on the web. Much of the code we write in front-end JavaScript is event-based — we define some behavior, then attach it to an event that is triggered by the user (such as a click or a keypress). Our code is generally attached as a callback: a single function which is executed in response to the event.

For instance, suppose we wish to add some buttons to a page that adjust the text size. One way of doing this is to specify the font-size of the body element in pixels, then set the size of the other elements on the page (such as headers) using the relative em unit:

Read the code below and run the code to see how closure help us here to easily make separate functions for each sections:

function makeSizer(size) {
  return function() { = size + 'px';

var size12 = makeSizer(12);
var size14 = makeSizer(14);
var size16 = makeSizer(16);

document.getElementById('size-12').onclick = size12;
document.getElementById('size-14').onclick = size14;
document.getElementById('size-16').onclick = size16;
body {
  font-family: Helvetica, Arial, sans-serif;
  font-size: 12px;

h1 {
  font-size: 1.5em;

h2 {
  font-size: 1.2em;
<p>Some paragraph text</p>
<h1>some heading 1 text</h1>
<h2>some heading 2 text</h2>

<a href="#" id="size-12">12</a>
<a href="#" id="size-14">14</a>
<a href="#" id="size-16">16</a>

For further study about closures, I recommend you to visit this page by MDN:

26.04.2017 12:50

In JavaScript closures are awesome and unique, where variables or arguments are available to inner functions, and they will be alive even after the outer function has returned. Closures are used in most of the design patterns in JS

function getFullName(a, b) {
  return a + b;

function makeFullName(fn) {

  return function(firstName) {

    return function(secondName) {

      return fn(firstName, secondName);


makeFullName(getFullName)("Stack")("overflow"); // Stackoverflow
11.11.2014 08:03

For a six-year-old?

You and your family live in the mythical town of Ann Ville. You have a friend who lives next door, so you call them and ask them to come out and play. You dial:

000001 (jamiesHouse)

After a month, you and your family move out of Ann Ville to the next town, but you and your friend still keep in touch, so now you have to dial the area code for the town that your friend lives in, before dialling their 'proper' number:

001 000001 (annVille.jamiesHouse)

A year after that, your parents move to a whole new country, but you and your friend still keep in touch, so after bugging your parents to let you make international rate calls, you now dial:

01 001 000001 (myOldCountry.annVille.jamiesHouse)

Strangely though, after moving to your new country, you and your family just so happen to move to a new town called Ann Ville... and you just so happen to make friends with some new person called Jamie... You give them a call...

000001 (jamiesHouse)


So spooky in fact, that you tell Jamie from your old country about it... You have a good laugh about it. So one day, you and your family take a holiday back to the old country. You visit your old town (Ann Ville), and go to visit Jamie...

  • "Really? Another Jamie? In Ann Ville? In your new country!!?"
  • "Yeah... Let's call them..."

02 001 000001 (myNewCountry.annVille.jamiesHouse)


What's more, I have a load of questions about the patience of a modern six-year-old...

09.05.2013 14:18

Here is a simple real-time scenario. Just read it through, and you will understand how we have used closure here (see how seat number is changing).

All other examples explained previously are also very good to understand the concept.

function movieBooking(movieName) {
    var bookedSeatCount = 0;
    return function(name) {
        ++bookedSeatCount ;
        alert( name + " - " + movieName + ", Seat - " + bookedSeatCount )

var MI1 = movieBooking("Mission Impossible 1 ");
var MI2 = movieBooking("Mission Impossible 2 ");

// alert
// Mayur - Mission Impossible 1, Seat - 1

// alert
// Raju - Mission Impossible 1, Seat - 2

// alert
// Raja - Mission Impossible 2, Seat - 1
28.10.2014 06:22

Closures allow JavaScript programmers to write better code. Creative, expressive, and concise. We frequently use closures in JavaScript, and, no matter our JavaScript experience, we undoubtedly encounter them time and again. Closures might appear complex but hopefully, after you read this, closures will be much more easily understood and thus more appealing for your everyday JavaScript programming tasks.

You should be familiar with JavaScript variable scope before you read further because to understand closures you must understand JavaScript’s variable scope.

What is a closure?

A closure is an inner function that has access to the outer (enclosing) function’s variables—scope chain. The closure has three scope chains: it has access to its own scope (variables defined between its curly brackets), it has access to the outer function’s variables, and it has access to the global variables.

The inner function has access not only to the outer function’s variables, but also to the outer function’s parameters. Note that the inner function cannot call the outer function’s arguments object, however, even though it can call the outer function’s parameters directly.

You create a closure by adding a function inside another function.

A Basic Example of Closures in JavaScript:

function showName (firstName, lastName) {

  var nameIntro = "Your name is ";
  // this inner function has access to the outer function's variables, including the parameter
  ​function makeFullName () {
​    return nameIntro + firstName + " " + lastName;
​  return makeFullName ();


showName ("Michael", "Jackson"); // Your name is Michael Jackson

Closures are used extensively in Node.js; they are workhorses in Node.js’ asynchronous, non-blocking architecture. Closures are also frequently used in jQuery and just about every piece of JavaScript code you read.

A Classic jQuery Example of Closures:

$(function() {
​  var selections = []; 
  $(".niners").click(function() { // this closure has access to the selections variable​
    selections.push (this.prop("name")); // update the selections variable in the outer function's scope​

Closures’ Rules and Side Effects

1. Closures have access to the outer function’s variable even after the outer function returns:

One of the most important and ticklish features with closures is that the inner function still has access to the outer function’s variables even after the outer function has returned. Yep, you read that correctly. When functions in JavaScript execute, they use the same scope chain that was in effect when they were created. This means that even after the outer function has returned, the inner function still has access to the outer function’s variables. Therefore, you can call the inner function later in your program. This example demonstrates:

function celebrityName (firstName) {
    var nameIntro = "This celebrity is ";
    // this inner function has access to the outer function's variables, including the parameter​
   function lastName (theLastName) {
        return nameIntro + firstName + " " + theLastName;
    return lastName;
​var mjName = celebrityName ("Michael"); // At this juncture, the celebrityName outer function has returned.​
​// The closure (lastName) is called here after the outer function has returned above​
​// Yet, the closure still has access to the outer function's variables and parameter​
mjName ("Jackson"); // This celebrity is Michael Jackson

2. Closures store references to the outer function’s variables:

They do not store the actual value. Closures get more interesting when the value of the outer function’s variable changes before the closure is called. And this powerful feature can be harnessed in creative ways, such as this private variables example first demonstrated by Douglas Crockford:

function celebrityID () {
    var celebrityID = 999;
    // We are returning an object with some inner functions​
    // All the inner functions have access to the outer function's variables​
    return {
        getID: function ()  {
            // This inner function will return the UPDATED celebrityID variable​
            // It will return the current value of celebrityID, even after the changeTheID function changes it​
          return celebrityID;
        setID: function (theNewID)  {
            // This inner function will change the outer function's variable anytime​
            celebrityID = theNewID;
​var mjID = celebrityID (); // At this juncture, the celebrityID outer function has returned.​
mjID.getID(); // 999​
mjID.setID(567); // Changes the outer function's variable​
mjID.getID(); // 567: It returns the updated celebrityId variable

3. Closures Gone Awry

Because closures have access to the updated values of the outer function’s variables, they can also lead to bugs when the outer function’s variable changes with a for loop. Thus:

// This example is explained in detail below (just after this code box).​
​function celebrityIDCreator (theCelebrities) {
    var i;
    var uniqueID = 100;
    for (i = 0; i < theCelebrities.length; i++) {
      theCelebrities[i]["id"] = function ()  {
        return uniqueID + i;
    return theCelebrities;
​var actionCelebs = [{name:"Stallone", id:0}, {name:"Cruise", id:0}, {name:"Willis", id:0}];
​var createIdForActionCelebs = celebrityIDCreator (actionCelebs);
​var stalloneID = createIdForActionCelebs [0];

    console.log(; // 103

More can be found here-



05.04.2016 11:15

Here's the most Zen answer I can give:

What would you expect this code to do? Tell me in a comment before you run it. I'm curious!

function foo() {
  var i = 1;
  return function() {

var bar = foo();

var baz = foo();

Now open the console in your browser (Ctrl + Shift + I or F12, hopefully) and paste the code in and hit Enter.

If this code printed what you expect (JavaScript newbies - ignore the "undefined" at the end), then you already have wordless understanding. In words, the variable i is part of the inner function instance's closure.

I put it this way because, once I understood that this code is putting instances of foo()'s inner function in bar and baz and then calling them via those variables, nothing else surprised me.

But if I'm wrong and the console output surprised you, let me know!

15.04.2015 00:13

(I am not taking the 6-years-old thing into account.)

In a language like JavaScript, where you can pass functions as parameters to other functions (languages where functions are first class citizens), you will often find yourself doing something like:

var name = 'Rafael';

var sayName = function() {

You see, sayName doesn't have the definition for the name variable, but it does use the value of name that was defined outside of sayName (in a parent scope).

Let's say you pass sayName as a parameter to another function, that will call sayName as a callback:


Note that:

  1. sayName will be called from inside functionThatTakesACallback (assume that, since I haven't implemented functionThatTakesACallback in this example).
  2. When sayName is called, it will log the value of the name variable.
  3. functionThatTakesACallback doesn't define a name variable (well, it could, but it wouldn't matter, so assume it doesn't).

So we have sayName being called inside functionThatTakesACallback and referring to a name variable that is not defined inside functionThatTakesACallback.

What happens then? A ReferenceError: name is not defined?

No! The value of name is captured inside a closure. You can think of this closure as context associated to a function, that holds the values that were available where that function was defined.

So: Even though name is not in scope where the function sayName will be called (inside functionThatTakesACallback), sayName can access the value for name that is captured in the closure associated with sayName.


From the book Eloquent JavaScript:

A good mental model is to think of function values as containing both the code in their body and the environment in which they are created. When called, the function body sees its original environment, not the environment in which the call is made.

08.04.2015 21:27

A function is executed in the scope of the object/function in which it is defined. The said function can access the variables defined in the object/function where it has been defined while it is executing.

And just take it literally.... as the code is written :P

04.05.2013 16:06

Given the following function

function person(name, age){

    var name = name;
    var age = age;

    function introduce(){
        alert("My name is "+name+", and I'm "+age);

    return introduce;

var a = person("Jack",12);
var b = person("Matt",14);

Everytime the function person is called a new closure is created. While variables a and b have the same introduce function, it is linked to different closures. And that closure will still exist even after the function person finishes execution.

Enter image description here

a(); //My name is Jack, and I'm 12
b(); //My name is Matt, and I'm 14

An abstract closures could be represented to something like this:

closure a = {
    name: "Jack",
    age: 12,
    call: function introduce(){
        alert("My name is "+name+", and I'm "+age);

closure b = {
    name: "Matt",
    age: 14,
    call: function introduce(){
        alert("My name is "+name+", and I'm "+age);

Assuming you know how a class in another language work, I will make an analogy.

Think like

  • JavaScript function as a constructor
  • local variables as instance properties
  • these properties are private
  • inner functions as instance methods

Everytime a function is called

  • A new object containing all local variables will be created.
  • Methods of this object have access to "properties" of that instance object.
22.06.2013 19:08

The more I think about closure the more I see it as a 2-step process: init - action

init: pass first what's needed...
action: in order to achieve something for later execution.

To a 6-year old, I'd emphasize on the practical aspect of closure:

Daddy: Listen. Could you bring mum some milk (2).
Tom: No problem.
Daddy: Take a look at the map that Daddy has just made: mum is there and daddy is here.
Daddy: But get ready first. And bring the map with you (1), it may come in handy
Daddy: Then off you go (3). Ok?
Tom: A piece of cake!

Example: Bring some milk to mum (=action). First get ready and bring the map (=init).

function getReady(map) {
    var cleverBoy = 'I examine the ' + map;
    return function(what, who) {
        return 'I bring ' + what + ' to ' + who + 'because + ' cleverBoy; //I can access the map
var offYouGo = getReady('daddy-map');
offYouGo('milk', 'mum');

Because if you bring with you a very important piece of information (the map), you're knowledgeable enough to execute other similar actions:

offYouGo('potatoes', 'great mum');

To a developer I'd make a parallel between closures and OOP. The init phase is similar to passing arguments to a constructor in a traditional OO language; the action phase is ultimately the method you call to achieve what you want. And the method has access these init arguments using a mechanism called closure.

See my another answer illustrating the parallelism between OO and closures:

How to "properly" create a custom object in JavaScript?

25.01.2014 16:43

Even though many beautiful definitions of JavaScript closures exists on the Internet, I am trying to start explaining my six-year-old friend with my favourite definitions of closure which helped me to understand the closure much better.

What is a Closure?

A closure is an inner function that has access to the outer (enclosing) function’s variables—scope chain. The closure has three scope chains: it has access to its own scope (variables defined between its curly brackets), it has access to the outer function’s variables, and it has access to the global variables.

A closure is the local variables for a function - kept alive after the function has returned.

Closures are functions that refer to independent (free) variables. In other words, the function defined in the closure 'remembers' the environment in which it was created in.

Closures are an extension of the concept of scope. With closures, functions have access to variables that were available in the scope where the function was created.

A closure is a stack-frame which is not deallocated when the function returns. (As if a 'stack-frame' were malloc'ed instead of being on the stack!)

Languages such as Java provide the ability to declare methods private, meaning that they can only be called by other methods in the same class. JavaScript does not provide a native way of doing this, but it is possible to emulate private methods using closures.

A "closure" is an expression (typically a function) that can have free variables together with an environment that binds those variables (that "closes" the expression).

Closures are an abstraction mechanism that allow you to separate concerns very cleanly.

Uses of Closures:

Closures are useful in hiding the implementation of functionality while still revealing the interface.

You can emulate the encapsulation concept in JavaScript using closures.

Closures are used extensively in jQuery and Node.js.

While object literals are certainly easy to create and convenient for storing data, closures are often a better choice for creating static singleton namespaces in a large web application.

Example of Closures:

Assuming my 6-year-old friend get to know addition very recently in his primary school, I felt this example of adding the two numbers would be the simplest and apt for the six-year-old to learn the closure.

Example 1: Closure is achieved here by returning a function.

function makeAdder(x) {
    return function(y) {
        return x + y;

var add5 = makeAdder(5);
var add10 = makeAdder(10);

console.log(add5(2));  // 7
console.log(add10(2)); // 12

Example 2: Closure is achieved here by returning an object literal.

function makeAdder(x) {
    return {
        add: function(y){
            return x + y;

var add5 = makeAdder(5);

var add10 = makeAdder(10);

Example 3: Closures in jQuery

    var name="Closure is easy";

Useful Links:

Thanks to the above links which helps me to understand and explain closure better.

20.03.2014 12:32

Meet the illustrated explanation: How do JavaScript closures work behind the scenes.

The article explains how the scope objects (or LexicalEnvironments) are allocated and used in an intuitive way. Like, for this simple script:

"use strict";

var foo = 1;
var bar = 2;

function myFunc() {
  //-- Define local-to-function variables
  var a = 1;
  var b = 2;
  var foo = 3;

//-- And then, call it:

When executing the top-level code, we have the following arrangement of scope objects:

Enter image description here

And when myFunc() is called, we have the following scope chain:

Enter image description here

Understanding of how scope objects are created, used and deleted is a key to having a big picture and to understand how do closures work under the hood.

See the aforementioned article for all the details.

02.09.2015 08:31

A closure is a function within a function that has access to its "parent" function's variables and parameters.


function showPostCard(Sender, Receiver) {

    var PostCardMessage = " Happy Spring!!! Love, ";

    function PreparePostCard() {
        return "Dear " + Receiver + PostCardMessage + Sender;

    return PreparePostCard();
showPostCard("Granny", "Olivia");
29.04.2015 13:36

To understand closures you have to get down to the program and literally execute as if you are the run time. Let's look at this simple piece of code:

Enter image description here

JavaScript runs the code in two phases:

  • Compilation Phase // JavaScript is not a pure interpreted language
  • Execution Phase

When JavaScript goes through the compilation phase it extract out the declarations of variables and functions. This is called hoisting. Functions encountered in this phase are saved as text blobs in memory also known as lambda. After compilation JavaScript enters the execution phase where it assigns all the values and runs the function. To run the function it prepares the execution context by assigning memory from the heap and repeating the compilation and execution phase for the function. This memory area is called scope of the function. There is a global scope when execution starts. Scopes are the key in understanding closures.

In this example, in first go, variable a is defined and then f is defined in the compilation phase. All undeclared variables are saved in the global scope. In the execution phase f is called with an argument. f's scope is assigned and the compilation and execution phase is repeated for it.

Arguments are also saved in this local scope for f. Whenever a local execution context or scope is created it contain a reference pointer to its parent scope. All variable access follows this lexical scope chain to find its value. If a variable is not found in the local scope it follows the chain and find it in its parent scope. This is also why a local variable overrides variables in the parent scope. The parent scope is called the "Closure" for local a scope or function.

Here when g's scope is being set up it got a lexical pointer to its parents scope of f. The scope of f is the closure for g. In JavaScript, if there is some reference to functions, objects or scopes if you can reach them somehow, it will not get garbage collected. So when myG is running, it has a pointer to scope of f which is its closure. This area of memory will not get garbage collected even f has returned. This is a closure as far as the runtime is concerned.


  • It is an implicit, permanent link between a function and its scope chain...
  • A function definition's (lambda) hidden [[scope]] reference.
  • Holds the scope chain (preventing garbage collection).
  • It is used and copied as the "outer environment reference" anytime the function is run.


var data = "My Data!";
setTimeout(function() {
  console.log(data); // Prints "My Data!"
}, 3000);


function makeAdder(n) {
  var inc = n;
  var sum = 0;
  return function add() {
    sum = sum + inc;
    return sum;

var adder3 = makeAdder(3);

A very interesting talk on closures and more is Arindam Paul - JavaScript VM internals, EventLoop, Async and ScopeChains.

30.12.2015 14:25

From a personal blog post:

By default, JavaScript knows two types of scopes: global and local.

var a = 1;

function b(x) {
    var c = 2;
    return x * c;

In the above code, variable a and function b are available from anywhere in the code (that is, globally). Variable c is only available within the b function scope (that is, local). Most software developers won't be happy with this lack of scope flexibility, especially in large programs.

JavaScript closures help solving that issue by tying a function with a context:

function a(x) {
    return function b(y) {
        return x + y;

Here, function a returns a function called b. Since b is defined within a, it automatically has access to whatever is defined in a, that is, x in this example. This is why b can return x + y without declaring x.

var c = a(3);

Variable c is assigned the result of a call to a with parameter 3. That is, an instance of function b where x = 3. In other words, c is now a function equivalent to:

var c = function b(y) {
    return 3 + y;

Function b remembers that x = 3 in its context. Therefore:

var d = c(4);

will assign the value 3 + 4 to d, that is 7.

Remark: If someone modifies the value of x (say x = 22) after the instance of function b has been created, this will be reflected in b too. Hence a later call to c(4) would return 22 + 4, that is 26.

Closures can also be used to limit the scope of variables and methods declared globally:

(function () {
    var f = "Some message";

The above is a closure where the function has no name, no argument and is called immediately. The highlighted code, which declares a global variable f, limits the scopes of f to the closure.

Now, there is a common JavaScript caveat where closures can help:

var a = new Array();

for (var i=0; i<2; i++) {
    a[i]= function(x) { return x + i ; }

From the above, most would assume that array a would be initialized as follows:

a[0] = function (x) { return x + 0 ; }
a[1] = function (x) { return x + 1 ; }
a[2] = function (x) { return x + 2 ; }

In reality, this is how a is initialized, since the last value of i in the context is 2:

a[0] = function (x) { return x + 2 ; }
a[1] = function (x) { return x + 2 ; }
a[2] = function (x) { return x + 2 ; }

The solution is:

var a = new Array();

for (var i=0; i<2; i++) {
    a[i]= function(tmp) {
        return function (x) { return x + tmp ; }
    } (i);

The argument/variable tmp holds a local copy of the changing value of i when creating function instances.

25.08.2012 13:36

Version picture for this answer: [Resolved]

Just forget about scope every thing and remember: When a variable needed somewhere, javascript will not destroy it. The variable always point to newest value.

Example 1:

enter image description here

Example 2:

enter image description here

Example 3:enter image description here

31.07.2016 16:51

This answer is a summary of this youtube video Javascript Closures. So full credits to that video.

Closures are nothing but Stateful functions which maintain states of their private variables.

Normally when you make a call to a function as shown in the below figure. The variables are created on a stack ( running RAM memory) used and then disallocated.

enter image description here

But now there are situations where we want to maintain this state of the function thats where Javascript closures comes to use. A closure is a function inside function with a return call as shown in the below code.

enter image description here

So the closure code for the counter function above looks something as shown below.Its a function inside function with a return statement.

function Counter() {
           var counter = 0;

           var Increment = function () {
           return {

So now if you make a call the counter will increment in other words the function call maintains states.

var x = Counter(); // get the reference of the closure
x.Increment(); // Displays 1
x.Increment(); // Display 2 ( Maintains the private variables)

But now the biggest question whats the use of such stateful function. Stateful functions are building blocks to implement OOP concept like abstraction ,encapsulation and creating self contained modules.

So whatever you want encapsulated you can put it as private and things to be exposed to public should be put in return statement. Also these components are self contained isolated objects so they do not pollute global variables.

A object which follows OOP principles is self contained , follows abstraction , follows encapsulation and so. With out closures in Javascript this is difficult to implement.

enter image description here

22.04.2017 03:19

The following example is a simple illustration of a JavaScript closure. This is the closure function, which returns a function, with access to its local variable x,

function outer(x){
     return function inner(y){
         return x+y;

Invoke the function like this:

var add10 = outer(10);
add10(20); // The result will be 30
add10(40); // The result will be 50

var add20 = outer(20);
add20(20); // The result will be 40
add20(40); // The result will be 60
24.07.2015 10:35

A closure is something many JavaScript developers use all the time, but we take it for granted. How it works is not that complicated. Understanding how to use it purposefully is complex.

At its simplest definition (as other answers have pointed out), a closure is basically a function defined inside another function. And that inner function has access to variables defined in the scope of the outer function. The most common practice that you'll see using closures is defining variables and functions in the global scope, and having access to those variables in the function scope of that function.

var x = 1;
function myFN() {
  alert(x); //1, as opposed to undefined.
// Or
function a() {
   var x = 1;
   function b() {
       alert(x); //1, as opposed to undefined.

So what?

A closure isn't that special to a JavaScript user until you think about what life would be like without them. In other languages, variables used in a function get cleaned up when that function returns. In the above, x would have been a "null pointer", and you'd need to establish a getter and setter and start passing references. Doesn't sound like JavaScript right? Thank the mighty closure.

Why should I care?

You don't really have to be aware of closures to use them. But as others have also pointed out, they can be leveraged to create faux private variables. Until you get to needing private variables, just use them like you always have.

29.05.2015 00:09